Tuesday, November 19, 2019

ICAR SRF (AIEEA PhD) in Crop Science-I


CROP SCIENCES-I

(1.1 Genetics & Plant Breeding, 1.2 Seed Science & Technology)

Syllabus-

1.1 GENETICS & PLANT BREEDING
Unit 1: General Genetics and Plant Breeding
Mendelian inheritance. Cell structure and division, Linkage, its detection and estimation. Epistasis. Gene concept, allelism and fine structure of the gene. Extrachromosomal inheritance. DNA – structure, function, replication and repair. Genetic code. Gene-enzyme relationship. Replication, Transcription and Translation. Gene regulation in prokaryotes and eukaryotes. Nuclear and cytoplasmic genome organization. Spontaneous and induced mutations and their molecular mechanisms. Crop domestication, evolution of crops and centers of diversity. Emergence of scientific plant breeding. Objectives and accomplishments in plant breeding and the role of National and International institutes. Gametogenesis and fertilization. Modes of sexual and asexual reproduction and its relation to plant breeding methodology. Apomixes, incompatibility and male sterility systems and their use in plant breeding.
Unit 2: Economics Botany and Plant Breeding Methods
Origin, distribution, classification, description and botany of cereals (wheat, rice, maize, sorghum, pearl millet, minor millets); pulses (pigeonpea, chickpea, black gram, green gram, cowpea, soybean, pea, lentil, horse gram, lab-lab, rice bean, winged bean, Lathyrus, Lima bean; oilseeds (groundnuts, sesame, castor, rapeseed mustard, sunflower, Niger, linseed); fibers and sugar crops, fodder and green manures; Breeding methods for self-pollinated, cross-pollinated and clonally propagated crops. Component, recombinational and transgressive breeding. Single seed descent. Populations, their improvement methods and maintenance, Hybrid breeding and genetic basis of heterosis. Ideotype breeding. Mutation breeding, Concept of tree breeding.

Unit 3: Genome Organization and Cytogenetics of Crop Plants
Chromosome structure, function and replication. Recombination and crossing over. Karyotype analysis. Banding techniques. In situ hybridization. Special types of chromosomes. Chromosomal interchanges, inversions, duplications and deletions. Polyploids, haploids, aneuploids and their utility. Wide hybridization and chromosomal manipulations for alien gene transfer. Pre-and post- fertilization barriers in wide hybridization. Genome organization and cytogenetics of important crop species- wheat, maize, rice, sorghum, Brassica, cotton, Vigna, potato and sugarcane. Principles and procedures of genome analysis. Cytogenetic techniques foe gene location and gene transfer, Construction and use of molecular marker based chromosome maps. Comparative mapping and genome analysis.
Unit 4: Quantitative and Biometrical Genetics
Quantitative characters. Multiple factors inheritance. Genetic control of polygenic characters. Genetic advance and types of selection and correlated response. Hardy Weinberg law. Linkage disequilibrium. Genetic load. Polymorphism. Breeding value, heritability. Response to selection, correlated response. Estimates of variance components and covariance among relatives. Mating designs with random and inbred parents. Estimation of gene effects and combing ability. Effects of linkage and epistasis on estimation of genetic parameters. Maternal effects. Genotype-environment interactions and stability of performance. Heterosis and its basis. Mating system and mating design- diallel, line X tester, NC-1, NC-II and NC-III designs, approaches to estimate and exploit component of self and cross pollinated crops. Genotype X environment interaction and stability analysis.
Unit 5: Genetic Engineering and Biotechnological Tools in Plant Breeding
Somatic hybridization, micropropagation, somaclonal variation in vitro mutagenesis. Artificial synthesis of gene. Genetic and molecular markers, generations of molecular markers and their application in genetic analyses and breeding. Molecular markers in genetic diversity analysis and breeding for complex characters. Gene tagging, QTL mapping and marker aided selection. Genome projects and utilization of sequence formation. Vectors. DNA libraries, DNA fingerprinting, DNA sequencing. Nuclei acid hybridization and immunochemical detection. Chromosome walking, Recombinant DNA technology, Gene cloning strategies. Genetic transformation and transgenics. Antisense RNA, RNAi and micro RNA techniques in crop improvement.
Unit 6: Plant Breeding for Stress Resistance and Nutritional Quality
Genetic basis and breeding for resistance to diseases and insect-pests. Breeding for vertical and horizontal resistance to diseases. Genetic and physiological basis of abiotic stress tolerance. Breeding for resistance to heat, frost, flood, drought and soil stresses. Important quality parameters in various crops, their genetic basis and breeding for these traits. Role of molecular markers in stress resistance breeding: MAS, MARS and MABB.
Unit 7: Plant Genetic Resources and their Regulatory System; Varietal Release and Seed Production
Plant exploration, germplasm introduction, exchange, conservation, evaluation and utilization of plant genetic resources. Convention on Biological Diversity and International Treaty on Plant Genetic Resources for Food and Agriculture. Intellectual Property Rights. Biodiversity Act. Plant Variety Protection and Farmers' Rights Act. System of variety release and notification. Types of seeds and seed chain. Seed production and certification.
Unit 8: Statistical Methods and Field Plot Techniques
Frequency distribution. Measures of central tendency, probability theory and its applications in genetics. Probability distribution and tests of significance. Correlation, linear, partial and multiple regression. Genetic divergence. Multivariate analysis. Design of experiments- basic principles, completely randomized design, randomized block design and split plot design. Complete and incomplete block designs. Augmented design, Grid and honeycomb design. Hill plots, unreplicated evaluation. Data collection and interpretation.
1.2 SEED SCIENCE & TECHNOLOGY
Unit 1 : Seed Biology
Floral biology, mode of reproduction, sporogenesis, pollination, fertilization, embryogenesis, fruit & seed development and physiological and harvestable maturity. Apomixis, parthenocarpy, polyembryony and somatic embryoids and synthetic seeds. Seed structure of monocot and dicot. Seed maturation and longevity in orthodox and recalcitrant seed. Chemical composition of seed. Seed dormancy - types, causes and mechanisms of induction and release, factors affecting, methods to overcome dormancy and its significance in agriculture. Seed germination - requirements, imbibition pattern, physiological and biochemical changes, and role of hormones.
Unit 2 : Seed Production
Introduction to crop breeding methods. Variety testing, release and notification. Genetic purity concept and factors responsible for deterioration of varieties. Maintenance breeding. General system of seed multiplication. Seed production agencies. Identification of seed production areas and factors affecting it. Compact area approach in seed production. Seed production planning, equipment, input and manpower requirement. Factors affecting pollination and seed set viz., temperature, humidity, wind velocity, insect pollinators, and supplementary pollination. Male sterility, self-incompatibility and their role in hybrid seed production. Heterosis and hybrid vigour. Techniques of hybrid seed production - emasculation and dusting, detasseling, male sterility, sex expression, self-incompatibility and chemical hybridizing agents. Principles and methods of seed production of varieties and hybrids of cereals like wheat, paddy, sorghum, pearl millet and maize; pulses like chickpea, pigeon pea, green gram, black gram, soybean and cowpea; oilseeds like groundnut, brassica, sesame, sunflower and castor; fibre crops like cotton and jute; vegetables crops like tomato, brinjal, okra, chilli, important cole and cucurbitaceous crops; important forage legumes and grasses and seed crop management, time of harvesting and threshing/extraction methods. Seed production technology of plantation crops like coffee, tea, rubber, cocoa, cardamom and pepper. Disease free clonal propagation of crops like potato, sugarcane sweet potato, tapioca, colocasia, betel vine, fruit crops like mango, citrus, banana, guava, sapota, pineapple, grape, apple, pear, plum, peach, apricot and seed production and clonal propagation of annual and perennial flowers like rose, gladiolus, chrysanthemum, marigold, dahlia, phlox and petunia. Clonal standards and degenerations. Micro propagation.
Unit 3 : Seed Processing
Principles of seed processing. Seed drying principles and methods. Pre-cleaning, grading, treatment, pelleting and packaging. Harvesting and seed extraction methods. Seed invigoration and enhancement treatment and their applications. Seed processing machines like cleaner cum grader, specific gravity separator, indented cylinder, seed treater, weighing and bagging machines, their operation and maintenance. Seed quality maintenance during processing.
Unit 4: Seed Quality Control
Seed legislation - Seeds Act 1966, Seed Rules 1969 and New Seed Bill 2004, Seed Law Enforcement. Seed certification – history, concept, organization, phases and minimum certification standards. Field inspection principles and methods. Inspection at harvesting, threshing and processing. Pre-and post-quality testing or genetic purity. Seed Certification Schemes, concepts and procedures. Seed Testing concepts and objectives, its role in seed quality control. Seed sampling, seed moisture testing, purity analysis, germination testing, tolerance tests and equipment. Seed testing procedures for principal agri horticultural crops. Quick viability tests. Seed vigour, its significance and testing methods. Testing for genuineness of varieties – principles and methods based on seed, seedling and plant characters, biochemical techniques namely electrophoresis of proteins and isoenzymes and DNA fingerprinting. International Seed Testing Association (ISTA), its role in development of seed testing procedures, rules and seed quality assurance for international seed trade.
Unit 5 : Seed Storage
Requirements and types of seed storage. Factors affecting seed storage and role of moisture, temperature, RH and moisture equilibrium. Viability nomographs. Seed deterioration causes and methods of control. Physiological, biochemical and molecular changes in seed ageing. Longevity of orthodox and recalcitrant seeds. Seed drying and Packaging needs. Storage structures. Methods of stacking and their impact. Short and medium term storage. Controlled storage. Germplasm storage. Cryo preservation. Design features of short, medium and long-term seed storage buildings. Operation and management of seed stores.
Unit 6 : Seed Health
Significance of seed health. Mode and mechanism of transmission of microorganisms - fungi, bacteria and viruses. Procedures for seed health test and rules. Externally and internally seed - borne pathogens, mode of infection, development and spread, methods of detection of seed borne diseases. Important seed-borne diseases of cereals, oilseeds, pulses, fibre crops, vegetables and their control measures. Quarantine and International procedures of phytosanitary certificates. Important storage pests, their identification, monitoring and detection. ET value, nature and extent of damage, natural enemies and management. Use of pesticides, botanicals, mycotoxins for seed treatments. Carry over infestation, principles of fumigation and safe use of fumigants.
Unit 7: Seed Industry Development and Marketing
Trends in National and International seed industry development-OECD. International Seed Trade Federation (ISF) and Indian seed associations. Economics of seed production. Market survey, demand forecasting, pricing policies, marketing channels, planning and sales promotion. Buyer behavior and role of Government, semi Government, co-operative and private sectors in seed trade. Responsibilities of seed companies and dealers in Seed Act. Seed import and export.
Unit 8 : Protection of Plant Varieties
Plant Variety Protection (PVP) and its significance. Protection of Plant Varieties and Farmers’ Right Act, 2001, its essential features. International Union for the Protection of New Varieties of Plants (UPOV) and its role in development of Plant breeders Rights and Seed Industry Development. Impact of PVP on seed supply system. DUS testing principles and application. Biodiversity Act. Criteria for protection of Essentially Derived Varieties (EDVs) and Genetically modified (GM) varieties.

Exam Pattern-


Amount of fellowship in PhD- 31000 per month

seats in PhD-



Books for ICAR SRF in Crop Science-I








No comments:

Post a Comment

Please give your suggestion for improvement......

Team- Nareda Agri Classes